Summary of Dent Assessment Methodologies and use of ILI Calliper Data

Daniel Finley, Senior Engineer, MACAW Engineering Ltd
13th October 2015
• Difficult to quantify the number of failures relating to dents due to the absence of data

• Kiefner et al: 90% of failures on gas pipelines relating to mechanical damage occur at the time of damage

• Delayed failure of dents due to fatigue damage have been reported (even on plain dents less than 2% OD)

• CONCAWE: 5% of all failures (1971 - 2013) were delayed (incidental) failures following mechanical damage
Requirement for Accurate Dent Assessment

- Failure statistics suggest that only a small percentage of failures will be caused by dents that are detected by ILI (<5% on gas pipelines) – however:
 - Dents are commonly reported on UK Gas pipelines with up to 10 dents reported per kilometre
 - Requirement to ensure the severity of dents can be accurately quantified to avoid unnecessary repair costs and associated disruption

What assessment tools are available?
FACTORS AFFECTING DENT SEVERITY

• Dent dimensions (e.g. depth, length, width)
• Pipe dimensions
• Material properties (strength, ductility)
• Dent shape (sharp, smooth, kinked etc.)
• Association with welds (and ductility of weld)
• Association with other anomalies (corrosion, cracks, gouges, laminations….)
• Restraint
• Static loading (internal pressure, axial stresses, thermal loads)
• Cyclic loading
• Springback / rerounding
DENT - DEFINITIONS

Dent (ASME B31.8): “a permanent deformation of the circular cross section of the pipe that produces a decrease in the diameter and is concave inward”

Plain Dent: a dent that is not associated with any welds or other anomalies (e.g. cracking / gouging)

Dent on a weld: a dent that affects the curvature of a pipeline at a girth or seam weld

“Kinked” dent: Subjective, but commonly taken to be a dent with a minimum radius of curvature less than 5t
DENT ASSESSMENT LEVELS (EXAMPLES)

Level 1
- Depth based – static and fatigue
- Considers association with welds and other defects
- Orientation around pipe circumference

Level 2
- Analytical solutions
- Basic strain-based approach (e.g. ASME B31.8)
- Fatigue based on estimate of SCF

Level 3
- Typically involving FEA to provide a more accurate estimate of SCF and strain
- SCF calculated either using dent shape directly from inspection or modelling denting process

Increasing demands on inspection data
• Allows plain dents up to 12% OD (depending on pipe grade and operating stress)
• Acceptance criteria provided for dents containing gouges
• Smooth dents on welds classed as extreme damage regardless of depth (pipelines operating >20% SMYS)
• Specific guidance given on assessing dents reported by ILI
ASSESSING DENTS REPORTED BY ILI

• Consideration must be given to ILI technology used
 o MFL / UT tools can detect dents but not always size them
 o Dents may contain cracking / gouging below the detection capabilities of the tool
 o Calliper tools may not have adequate resolution to support a strain assessment

• Consider risk of third party damage
 o Pipeline location and history of activity
 o Top of line / Bottom of line (TOL: 8 to 4 o’clock)
 o Check for coating damage
DENT DIMENSIONS FROM ILI

- Depth (excluding ovality)
- Depth (including ovality)
- Dent Dimensions (excluding ovality)
- Dent Dimensions (including ovality)
DENT STRAIN ASSESSMENT – PRINCIPLE

Strain assessment

Formulas based on ASME B31.8 (2012)

Circumferential bending strain

\[\varepsilon_1 = \frac{t}{2} \left(\frac{1}{R_0} - \frac{1}{R_1} \right) \]

Longitudinal bending strain

\[\varepsilon_2 = -\frac{t}{2R_2} \]

Extensional strain

\[\varepsilon_3 = \frac{1}{2} \left(\frac{d}{L} \right)^2 \]

Total effective strain of dent in the pipe

\[\varepsilon_{eff} = \sqrt{\varepsilon_1^2 + \varepsilon_1 \varepsilon_2 + \varepsilon_2^2} \]

Acceptable strain limit: <6% (plain dents)

- \(t \) = wall thickness
- \(R_0 \) = initial pipe surface radius
- \(R_1 \) = radius of curvature in transverse plane, negative for reentrant dents
- \(R_2 \) = radius of curvature in longitudinal plane, negative for reentrant dents
- \(L \) = dent length
- \(d \) = dent depth
DENT STRAIN – CALCULATION FROM ILI DATA

- Accurate Sampling
- Spline Approximation
- Curvature Determination
- Extension Determination
- Strain Calculation

Sampling → Spline → Extension

\[r_3 \rightarrow r_1 \rightarrow r_4 \rightarrow r_2 \]

Radius → Curvature
• Data smoothing needs to consider ILI resolution

• Manual / visual checks to validate the results of the strain assessment (is the radius of curvature realistic?)

• Consider the impact of any welds or other anomalies on the geometric profile and avoid significant influence on the strain results
DENT – FATIGUE ASSESSMENT (EPRG METHOD)

• “EPRG recommendations for the assessment of the resistance of pipelines to external damage”

Predictions of Plain Dent Fatigue Life Using the EPRG Approach with Safety Factors Recommended by PDAM (95% One-Tail Confidence Level) Versus Full-scale Test Results
DENT – FATIGUE ASSESSMENT (EPRG METHOD)

\[N = 1000 \left[\frac{(\sigma_u - 50)}{2\sigma_A k_s} \right]^{4.292} \]

Where,
\[N \quad \text{= Predicted number of cycles to failure,} \]
\[\sigma_u \quad \text{= Ultimate tensile strength (MPa),} \]
\[K_s \quad \text{= Stress concentration factor,} \]
\[2\sigma_A \quad \text{= Cyclic stress range at R = 0} \]

In order to account for the large scatter in the published full scale test data PDAM recommends the following safety factors to ensure a 95% confidence level for predicting a conservative result:

1. A safety factor of 13.3 for plain dents, and
2. A safety factor of 133 for dents affecting welds i.e. a factor of 10 reduction in fatigue life for a plain dent
DENT FATIGUE ANALYSIS

SCADA System

Pressure Data

Rainflow Counting

Stress range (S)

Fatigue Assessment

Pipeline with dent

RoGeo XT

Automated data conversion

FEA

<table>
<thead>
<tr>
<th>Dent ID</th>
<th>ID SCF</th>
<th>OD SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>5.18</td>
<td>5.26</td>
</tr>
<tr>
<td>002</td>
<td>4.29</td>
<td>4.48</td>
</tr>
<tr>
<td>003</td>
<td>3.76</td>
<td>3.99</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
DENT STRESS ASSESSMENT – DATA EXAMPLES

Stress distribution – overview

Stress distribution – detailed view

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Length [mm]</th>
<th>Depth [%OD]</th>
<th>OD SCF</th>
<th>ID SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:04</td>
<td>156</td>
<td>6.8</td>
<td>5.28</td>
<td>4.55</td>
</tr>
</tbody>
</table>
DENT STRESS ASSESSMENT – VALIDATION

- 16” diameter pipe
- Tests conducted in lab conditions
- External laser scans
- Pull tests with RoGeo XT
- Pressure cycled to failure

Typical SCF range for dents between ~2 to 6
COMPARISON OF REPEAT CALLIPER DATA

- Repeat calliper data can be compared to identify new dents and dents that have changed between inspections
- Results affected by:
 - Differences in calliper technology
 - Reporting thresholds
 - Sizing methods (e.g. including / excluding ovality)
- Can compare calliper signal data to increase confidence in result
• Although third party damage is one of the major causes of pipeline failures, delayed failures of dents that could be detected by ILI and assessed prior to failure are rare

• A wide range of dent assessment tools are available

• Detailed dent assessments requires high resolution and high accuracy data

• The pipeline industry has moved away from relying on dent depth to determine severity and increased focus on strain and SCF estimation

• Research is ongoing to further improve the accuracy of dent assessments. Current focus is on improving the accuracy of dent fatigue estimates
Contact Details
Daniel Finley, CEng MIMechE
Senior Engineer
MACAW Engineering Ltd
Floor 2, Q5
Quorum Business Park
Newcastle upon Tyne
NE12 8BS

Telephone: +44 (0)191 215 4010
www.macawengineering.com